Difference between revisions of "Differential Equations"
Jump to navigation
Jump to search
| Line 8: | Line 8: | ||
# integrate both sides, use sources such as [http://integral-table.com/ table of integrals] | # integrate both sides, use sources such as [http://integral-table.com/ table of integrals] | ||
# solve for y | # solve for y | ||
| + | |||
| + | ==Examples== | ||
| + | * [[Falling Body with Air Resist]] | ||
Revision as of 06:43, 5 May 2020
The integral character ∫
Method for solving linear differential equations:
- Put equation into standard form: dy/dx + f(x)y = g(x)
- Find the integrating factor: u(x) which is equal to e∫f(x)dx, so du/dx = u(x)f(x)
- multiply the standard form by u(x): u(x)dy/dx + u(x)f(x)y = u(x)g(x)
- use the product rule (udy/dx + ydu/dx = (u,y)d/dx) on the left side: d/dx(u(x),y(x)) = u(x)g(x)
- integrate both sides, use sources such as table of integrals
- solve for y